

Available online at www.sciencedirect.com

Journal of Catalysis 231 (2005) 115-130

JOURNAL OF CATALYSIS

www.elsevier.com/locate/jcat

Selective oxidation of methane over MoO_x/SiO_2 : isolation of the kinetics of reactions occurring in the gas phase and on the surfaces of SiO₂ and MoO_x

Nicholas Ohler, Alexis T. Bell*

Department of Chemical Engineering, University of California, Berkeley, CA 94720-1462, USA Received 7 August 2004; revised 17 December 2004; accepted 20 December 2004

Abstract

The selective oxidation of methane to formaldehyde over MoO_x/SiO_2 was investigated to identify the contributions of methane and formaldehyde reactions occurring in the gas phase and on the surfaces of SiO_2 and dispersed MoO_x to the overall observed reaction rate. Experiments were conducted with 4.5 wt% MoO_3/SiO_2 at a nominal surface concentration of 0.44 Mo nm⁻². Data were acquired for CH_4/O_2 ratios from 2 to 34 and temperatures from 848 to 923 K. Homogeneous oxidation of methane was negligible, and the homogeneous oxidation of formaldehyde contributed only to a small degree. The formation of formaldehyde was found to occur largely over MoO_x and only to a limited degree over SiO_2. By contrast, the rates of formaldehyde consumption over MoO_x and SiO_2 were comparable. For SiO_2 the only process occurring was CH_2O decomposition, which was independent of the CH_4/O_2 ratio, whereas in the case of MoO_x , CH_2O decomposition was accompanied by combustion of the H_2 formed and by direct CH_2O combustion principally to CO. A comprehensive model of the overall reaction kinetics was assembled from the kinetics determined for the reactions of methane and formaldehyde in the gas phase and on the surfaces of SiO_2 and MoO_x . This model describes the observed rates of methane conversion and the formaldehyde selectivity measured experimentally as functions of temperature and CH_4/O_2 ratio. This model is then used to determine the maximum single-pass yield of CH_2O for a given temperature and CH_4/O_2 ratio. It is predicted that the maximum single-pass yield increases with reaction temperature and decreasing CH_4/O_2 ratio.

© 2005 Published by Elsevier Inc.

Keywords: Methane; Formaldehyde; Methane oxidation; Formaldehyde oxidation; MoO₃/SiO₂; Molybdena; Silica

1. Introduction

The selective oxidation of methane to formaldehyde in a single step is a challenging problem of great practical importance [1]. Silica-supported oxides are among the bestperforming heterogeneous catalysts for the selective oxidation of methane, especially the supported oxides of Mo, V, and Fe [2–4]. Silica has emerged as the preferred support because other refractory supports, such as TiO₂ and Al₂O₃, burn formaldehyde very rapidly at temperatures well below those required for the activation of methane [5]. Although

* Corresponding author. *E-mail address:* bell@cchem.berkeley.edu (A.T. Bell). SiO₂ is inert to CH₂O relative to other supports, it still decomposes CH₂O rapidly at temperatures and contact times relevant to methane oxidation [6]. Since the optimum metal loading needed to achieve maximum formaldehyde yield is well below monolayer coverage [2,7], most of the exposed surface area is SiO₂. The loss of CH₂O via homogeneous reaction is also known to occur [8,9] and has been implicated as a primary factor limiting CH₂O yield during CH₄ oxidation over MoO_x/SiO₂ [7]. However, previous studies modeling the kinetics of CH₄ oxidation over bare SiO₂ and MoO_x/SiO₂ have ignored the gas-phase contribution to the CH₂O reaction rate [10–13]. Therefore the question arises, how much of a role do the silica support and the gas phase play in determining the product distribution during methane oxidation over silica-supported oxides? The selective oxidation of methane to formaldehyde may be reduced to two processes, the formation and consumption of the product formaldehyde. The kinetics of formaldehyde consumption (i.e., decomposition and oxidation) have typically been studied indirectly by analysis of rate data for methane oxidation. However, we can obtain a better understanding of the kinetics of CH_2O decomposition and oxidation by studying these secondary processes independently of CH_4 oxidation.

This study focuses on decoupling the rates of reaction occurring over MoO_x/SiO_2 . The rates of CH_4 oxidation and CH_2O consumption occurring in the gas phase, on the SiO_2 support, and on the MoO_x sites are decoupled through kinetic analysis of CH_4 oxidation and CH_2O reaction data obtained over a wide range of feed compositions and over a range of temperatures relevant to methane activation (> 848 K). The reaction network and rate laws utilized are justified by kinetic analysis. The individually measured kinetics are assembled to describe the relevant processes occurring during CH_4 oxidation over MoO_x/SiO_2 . The model is used to describe the effects of operating conditions on catalyst performance and to define the contributions of the gas phase, exposed support, and supported MoO_x to the overall rates of methane oxidation and formaldehyde consumption.

2. Experimental

A MoO_x/SiO_2 catalyst was prepared by aqueous impregnation of Silicycle 60-Å silica gel with ammonium heptamolybdate (AHM) tetrahydrate (Aldrich 99.98% pure). The bare silica gel was washed in 9 M HNO₃ at 333 K, rinsed thoroughly with deionized water, and calcined in flowing air for 3 h at 973 K to remove alkaline earth impurities [14,15]. This treatment reduced the silica surface area from 500 to 460 m² g⁻¹, as measured by five-point BET analysis of N₂ adsorption isotherms. AHM (0.067 g) was dissolved in 2.1 g of deionized water (150% of the pore-filling amount) for each gram of silica gel to be prepared. The silica and solution were mixed to dryness in a bath heated at 333 K, oven-dried at 383 K overnight, and calcined under flowing air at 873 K for 3 h before use. After loading with molybdena, the catalyst surface area was 426 m² g⁻¹. Elemental analysis (Galbraith Laboratories) determined the Mo weight fraction to be 3.0% (4.5 wt% as MoO₃), so that the nominal surface coverage of MoO_r was 0.44 Mo nm⁻². The diameter of the catalyst particles was 200-500 µm, which was suffi-

Table 1		
Catalyst	physical	properties

ciently small to ensure that the reactions were not limited by mass transfer according to the Weisz–Prater criterion [16]. The catalyst was used without adjustment of the size distribution or dilution.

The catalyst properties are summarized in Table 1. The parameter ζ describes the ratio of the exposed SiO₂ area per unit bed volume of the MoO_x/SiO₂ catalyst to that of the bare SiO₂, and is calculated as

$$\zeta = \frac{a_{\rm m}\rho_{\rm b}}{a_{\rm m}^0\rho_{\rm b}^0} \left(1 - \frac{c_{\rm m}}{c_{\rm m}^{\rm mono}}\right),\tag{1}$$

where $a_{\rm m}$ and $\rho_{\rm b}$ are the specific surface area and bulk density of the MoO_x/SiO₂ catalyst, respectively, and $a_{\rm m}^0$ and $\rho_{\rm b}^0$ are the corresponding parameters for the bare SiO₂. The term in parentheses accounts for the fraction of the surface of MoO_x/SiO₂ occupied by MoO_x. $c_{\rm m}$ is the surface concentration of Mo, and $c_{\rm m}^{\rm mono}$ is the theoretical monolayer coverage of MoO_x, taken as 8.2 Mo nm⁻² [17]. The porosity ε is calculated from the bulk density $\rho_{\rm b}$ and skeletal density $\rho_{\rm s}$ of each catalyst as

$$\varepsilon = \frac{\rho_{\rm b}}{\rho_{\varepsilon}} = 1 - \frac{\rho_{\rm b}}{\rho_{\rm s}},\tag{2}$$

where ρ_b was measured by volumetry, and ρ_s was estimated from linear summation of skeletal densities of the SiO₂ and MoO_x, assuming the MoO_x to be present as bulk MoO₃:

$$\rho_{\rm s} = (2.20 \text{ g cm}^{-3})(1 - \omega_{\rm MoO_3}) + (4.62 \text{ g cm}^{-3})\omega_{\rm MoO_3},$$
(3)

where ω_{MoO_3} is the weight fraction of MoO_x as MoO₃.

Raman spectra were recorded with a Kaiser Optical HoloLab 5000 series Raman spectrometer equipped with a Nd:YAG laser that was frequency-doubled to 532 nm and operated at 7 mW. Catalyst samples (50–100 mg) were ground into powder and pressed into discs 1 cm in diameter at 10,000 psi. The discs were placed in a sealed rotary cell and rotated at 400 rpm during laser exposure to distribute the beam over a greater area and reduce local heating. The cell was heated to 923 K with air flowing over the samples to examine the state of the catalysts at a temperature relevant to CH₄ oxidation. Cubic splines were utilized to remove background fluorescence. Raman peak positions were reproducible to within 1 cm⁻¹ for strong peaks and 2 cm⁻¹ for all peaks.

Flow experiments were conducted by supporting the catalyst on a plug of quartz wool in a quartz reactor with a quartz-sheathed thermocouple inserted halfway into the bed

	I					
Catalyst	Mo surface concentration	Specific surface area	Bulk density	Skeletal density	Porosity ε	Residual exposed
	$(Mo nm^{-2})$	$(m^2 g^{-1})$	$(g cm^{-3})$	$(g cm^{-3})$		suitace area ζ
SiO_2 MoO_x/SiO_2	0.44	460 426	0.570 0.660	2.20 2.28	0.741 0.711	1 1.01

Fig. 1. Schematic of reactor configurations utilized. The bulbless configuration was used for most of the experiments. The configuration utilizing a bulb was utilized to gather data at long contact times.

for temperature control. Two reactor geometries were utilized: one with a bulb and one without, depending on how much catalyst was needed. The reactors are shown schematically in Fig. 1. The tubing downstream of the bulb was of smaller diameter (2 mm) so that the product gases would be transported out of the heated zone as rapidly as possible after they left the catalyst bed [7]. The mass of the quartz wool plug was approximately 50 mg. We measured the activity of the quartz wool plug by running the reactor with and without the plug in place. The activity of the plug was undetectable for CH_4 oxidation and reacted with less than 5% of the CH_2O fed under the slowest flow conditions employed here.

The reactor was heated over a 15-cm zone with a 60-V Omegalux radiant heater (Omega CFRC-16/60-C-A). The vestibules at each end of the heater were stuffed with glass wool insulation. CH₄, O₂, and He were delivered to the manifold via Porter 201 mass flow controllers, which were calibrated with a bubble meter. CH₂O was added to the feed stream by passing on O₂/He flow through a saturator filled with beads of solid paraformaldehyde (Aldrich; 95% pure). We controlled the CH₂O vapor pressure in the saturator by recirculating heated water through a jacket surrounding the saturator. The temperature of the water was controlled with a Thermo Electron Neslab RTE-7 recirculating heater/chiller. A temperature of about 331 K was necessary to achieve a vapor pressure of 0.01 atm CH₂O in the saturator. Typical formaldehyde molar fractions observed during CH₄ oxidation were on the order of 1%, so similar molar fractions were targeted for studies of formaldehyde consumption. The feed flow could be directed through the catalyst bed or through a bypass for analysis of feed composition. All tubing downstream of the saturator was maintained at about 423 K with heat tapes to prevent condensation of water or solid

paraformaldehyde on the tubing walls. Pressure was monitored with a pressure transducer (Omega PX 543-150GI) positioned before the reactor. A National Instruments Lab-View interface was utilized with a Porter PCIM-4 controller to apply composition and total flow program setpoints to the mass flow controllers, and with an Omega CN3251 controller to apply temperature program setpoints to the radiant heater. Contact times were determined taking total pressure and temperature, as well as molar flow rates, into account, since the pressure was as high as ~ 2 atm for the highest flow rates utilized:

$$\tau = \frac{V}{F'} = \left(\frac{m\varepsilon}{\rho_{\rm b}}\right) \bigg/ \bigg(\frac{FRT}{P}\bigg). \tag{4}$$

In this expression, τ is the contact time, V is the gas volume within the catalyst bed, F' is the volumetric flow rate, m is the catalyst mass, ε is the catalyst porosity, $\rho_{\rm b}$ is the bulk catalyst density, F is the molar flow rate, R is the gas constant, T is the absolute temperature, and P is the total pressure. This definition differs slightly from the definition of space time, in which the reactor volume is the total volume occupied by the catalyst bed (the factor ε is omitted). The contact time defined in this way accurately reflects the amount of time the gas is within the catalyst bed. This detail becomes important when analysing homogeneous rates of reaction within a catalyst bed.

An HP 6890N gas chromatograph with a heated 250-µl sampling loop was used to measure the composition of both the reactor feed and the reactor effluent. A 30-foot-long, 1/8-inch-diameter column packed with Hayesep DB 80/100 mesh was used to separate all components. The column temperature was held at 278 K for 7 min, ramped at 45 K min⁻¹ to 423 K, and held at 423 K for 15 min. Eluted components were detected with a thermal conductivity detector. Repeated measurements of feed flows demonstrated standard deviations of 2% or less for all feed components relative to mean amounts. CH₂O peak areas were calibrated in the following manner. A mixture of CH₂O, O₂, and He was passed through reactor loaded with 5% Pd/Al₂O₃, which combusted CH₂O completely to CO₂. The amount of CH₂O responsible for each CH₂O peak observed during bypass of the reactor was set equal to the corresponding amount of CO₂ observed after complete combustion.

3. Modeling methods

During CH₄ oxidation over MoO_x/SiO₂, reactions can occur in the gas phase, on the exposed SiO₂ support, and on the supported MoO_x. To ascertain the contributions of each of these reactive media to the observed reaction rates, reactions were conducted with an empty reactor and with the reactor filled with either bare SiO₂ or the MoO_x/SiO₂ catalyst. The overall (observed) rate of reaction is assumed to be the sum of the individual contributions. For reactions over bare SiO₂, the observed reaction rates are assumed to include the rates in the gas phase and the rates on the SiO₂ surface. For reactions over MoO_x/SiO_2 , the rates include both of these contributions and the contribution of the supported MoO_x moieties. Denoting homogeneous reaction with H, reaction on the SiO₂ surface with S, and reaction on the supported MoO_x with M, the observed rates over SiO₂ are thus

$$r_i = \varepsilon r_{i\rm H} + r_{i\rm S} \tag{5}$$

and the rates over MoO_x/SiO_2 are

$$r_i = \varepsilon r_{i\mathrm{H}} + \zeta r_{i\mathrm{S}} + r_{i\mathrm{M}}.\tag{6}$$

In Eqs. (5) and (6), all rates have units of mol cm⁻³ s⁻¹. Surface reaction rates are normalized by catalyst bed volume to allow summation with the homogeneous reaction rate. The rates are easily converted to the typical area or molar bases by multiplication by the appropriate bulk catalyst properties taken from Table 1:

$$r'_{iS} (\operatorname{mol}_{i} \operatorname{m}^{-2} \operatorname{s}^{-1}) = \frac{r_{iS} (\operatorname{mol}_{i} \operatorname{cm}^{-3} \operatorname{s}^{-1})}{a_{\mathrm{m}}^{0} (\operatorname{m}^{2} \operatorname{g}^{-1}) \times \rho_{\mathrm{b}}^{0} (\operatorname{g} \operatorname{cm}^{-3})},$$
(7)
$$r''_{iM} (\operatorname{mol}_{i} \operatorname{mol}_{\mathrm{Mo}}^{-1} \operatorname{s}^{-1}) = \left(r_{iM} (\operatorname{mol}_{i} \operatorname{cm}^{-3} \operatorname{s}^{-1}) \times 6.02 \times 10^{23} (\operatorname{Mo} \operatorname{mol}_{\mathrm{Mo}}^{-1}) \right) / \left(a_{\mathrm{m}} (\operatorname{m}^{2} \operatorname{g}^{-1}) \times \rho_{\mathrm{b}} (\operatorname{g} \operatorname{cm}^{-3}) \right)$$

× 10¹⁸ (nm² m⁻²) ×
$$c_{\rm Mo}$$
 (Mo nm⁻²)). (8)

In Eqs. (5) and (6) the rate of homogeneous reaction $r_{i\rm H}$ is reduced by the factor ε to account for the fraction of the catalyst bed occupied by the gas phase. The rate of reaction over SiO₂ is assumed to be proportional to the SiO₂ surface area, and hence the rate of reaction over bare SiO₂ is multiplied by ζ in Eq. (6) in order to describe the extent to which such reaction contributes to the overall surface reaction occurring on MoO_x/SiO₂.

Reaction modeling and data fitting were performed with the use of a plug-flow reactor (PFR) model implemented in Mathematica. The effects of axial dispersion were examined but were found to have very little impact on the values of the extracted kinetic parameters, so an ideal PFR model was utilized. The differential equations describing the concentration profiles of gaseous and surface species were solved along the length of the reactor, with the NDSolve algorithm as a shooting method. The calculated gas-phase composition of the reactor effluent was compared with the experimentally observed effluent composition in terms of the mean observed reaction rate, calculated as

$$\langle r_i \rangle = \frac{Fz_i X_i}{V} = \frac{F(z_i - y_i)}{V},\tag{9}$$

where X_i , y_i , and z_i are, respectively, the conversion, effluent fraction, and feed fraction of component *i*. For homogeneous reaction, *V* is the reactor volume. For reaction over a solid catalyst, *V* is the volume of the catalyst bed, m/ρ_b . Rates reported here are mean rates calculated according to Eq. (9) unless otherwise noted. We minimized the sum of the

squared differences between the mean rates observed experimentally and calculated from the model by adjusting kinetic parameters with the FindMinimum search algorithm.

During CH₄ oxidation, O₂ was the limiting reagent. The O₂ conversion varied from 1% to as high as 95%, depending on operating conditions. During CH₂O oxidation/decomposition, CH₂O was the limiting reagent, and CH₂O conversions approached \sim 75% in some cases. Because a plug-flow reactor model was used, and because the state of the surface is taken into account in the model, high reactant conversions do not present a problem in the analysis of the rate data.

4. Results and discussion

4.1. Catalyst characterization

The Raman spectra of the bare SiO₂ support under ambient conditions and at 923 K under flowing air are shown in Fig. 2. The spectra show features characteristic of the tetrahedral SiO₂ network at 430, 805, 1060, and 1180 cm⁻¹. The bands at 605 and 490 cm⁻¹ are assigned to the D₁ and D₂ defect features, respectively, and the band at 970 cm⁻¹ is assigned to the Si–O stretching vibrations of silanol groups [18–20]. The spectrum of the bare SiO₂ does not change upon heating to 923 K in flowing air, but the Raman scattering amplitude increases by about tenfold.

Raman spectra for the MoO_x/SiO_2 catalyst at ambient temperature and at 923 K are shown in Fig. 3. Under ambient conditions, the spectrum shows features at 870 and 955 cm⁻¹ that are indicative of surface polymolybdate species [21,22]. Upon heating in dry flowing air to 923 K, the polymolybdate species disperse to yield isolated monooxo molybdate species, characterized by the single Mo=O

Fig. 2. Raman spectra of bare SiO_2 (a) under ambient conditions and (b) at 923 K under flowing air. Ambient spectrum amplified $10 \times$.

Fig. 3. Raman spectra of MoO_x/SiO_2 (a) under ambient conditions and (b) at 923 K under flowing air. Ambient spectrum amplified 5×.

stretching frequency observed at 985 cm⁻¹ [22-28]. The SiO₂ features at 430, 490, 605, 805, and 1190 cm⁻¹ are all clearly observed, but the features at 975 and 1060 cm^{-1} are obscured by the intense Mo=O stretching band. The feature at 370 cm⁻¹ in the spectra of the MoO_x/SiO₂ under ambient conditions and at 923 K has been assigned as the bending mode of surface molybdate species [22]. The spectra observed under ambient conditions and during heating at 923 K are similar to those previously observed for MoO_x/SiO_2 prepared by deposition-precipitation [23]. The similarity of the Raman spectra is consistent with previous findings that the structure of SiO₂-supported MoO_x moieties is independent of the Mo precursor after high-temperature calcination [21]. Raman spectra similar to that shown in Fig. 3 have been recorded during CH₄ oxidation at 823 K [22,24,25], suggesting that supported MoO_x does not restructure under conditions of CH₄ oxidation.

The coordination of MoO_x/SiO_2 at these low weight loadings is octahedral under ambient conditions [21], but the structure under dehydrated conditions has been disputed in the literature, with some authors claiming tetrahedral coordination [26,27], others claiming distorted octahedral coordination [24,25,29,30], and some claiming a geometry "intermediate" between tetrahedral and octahedral [31]. The broad bands observed by UV-visible spectroscopy for this catalyst and the close proximity of the ligand-to-metal charge transfer bands for the T_d and O_h coordination preclude the use of the technique as a definitive indicator of coordination [29,32]. The most useful method for determining Mo coordination in this case is XANES. LIII-edge XANES data for MoO_x/SiO_2 suggest a degree of non-centrosymmetry for Mo intermediate between O_h and T_d [31]. Based on this observation and the observation by Raman and IR that the MoO_x/SiO_2 has a single terminal oxo group, it seems likely that the SiO₂-supported MoO_x moieties observed at 923 K

Fig. 4. Carbon selectivity versus methane conversion for methane oxidation over bare SiO₂ at 873 K. Feed composition is 90% CH₄, 10% O₂. CH₄ conversion was varied by varying contact time. Trendlines are empirical polynomial fits.

Fig. 5. Carbon selectivity versus methane conversion for methane oxidation over $0.44 \text{ Mo nm}^{-2} \text{ MoO}_x/\text{SiO}_2$ at 873 K. Feed composition is 90% CH₄, 10% O₂. CH₄ conversion was varied by varying contact time. Trendlines are empirical polynomial fits.

are pentacoordinate. A trigonal bipyramid or square pyramid will have a degree of non-centrosymmetry intermediate between O_h and T_d and will have six total bonds with a single terminal oxo group. Such a coordination has previously been assigned to MoO_x/ZrO_2 at low loadings after calcination at 973 K, based on Raman spectroscopic observations [33].

4.2. Product distribution

The product distributions observed during CH₄ oxidation at 873 K over bare SiO₂ and over MoO_x/SiO₂ are plotted versus CH₄ conversion in Figs. 4 and 5, respectively. Over both catalysts the product distribution approaches 100% CH₂O as the CH₄ conversion approaches zero, demonstrating that CH₂O is the only initial product. As the CH₄ conversion increases, the CH₂O selectivity decreases and the selectivities for CO and CO₂ increase. These results demonstrate that CO_x is produced in secondary reactions from CH₂O.

Whereas several authors have also made observations indicating that the initial product distribution of CH₄ oxidation over MoO_x/SiO_2 is > 95% CH₂O [7,34–36], Spencer and Pereira reported a product distribution of 89% CH₂O and 11% CO₂ in the limit of zero CH₄ conversion [37]. A possible explanation for this discrepancy is the presence of CO₂ in the CH₄ supply. At very low CH₄ conversion, the concentration of CO₂ contaminant becomes comparable to the concentrations of reaction products, and the apparent initial product distribution will include this contaminant CO₂ if it is uncorrected.

Based on our observations of the change in product distribution with CH_4 conversion, we assume that CH_4 is oxidized selectively to CH_2O , and that CO_x (CO and CO_2) is formed solely from subsequent reaction of CH_2O :

$$CH_4 \rightarrow CH_2O \rightarrow CO_x$$

Exclusion of a direct pathway from CH_4 to CO_2 allows CO and CO_2 to be treated as a single product (CO_x) in the analysis of the kinetics of CH_2O formation and consumption.

The ratio of CO/CO₂ observed during CH₂O oxidation/decomposition was about 12 over bare SiO₂ and about 9 over MoO_x/SiO₂. During CH₄ oxidation, the ratio was in the range of 8–10 over bare SiO₂ and 5.5–7 over MoO_x/SiO₂. The lower ratios observed during CH₄ oxidation are probably due to the higher partial pressure of H₂O during CH₄ oxidation and the water–gas shift equilibrium reaction, which lies toward CO₂ under the operating conditions employed in this study. Since the interconversion of CO and CO₂ was not investigated, no attempt was made to include the effects of this process in the modeling of CH₂O formation and consumption.

4.3. Methane oxidation

Homogeneous oxidation of CH₄ is not measurable under the conditions employed in this study. Whereas Baldwin et al. have found that homogeneous oxidation of CH₄ by O₂ becomes measurable at 923 K for residence times greater than 2 s and pressures greater than 2 atm [9], the contact times employed for CH₄ oxidation over MoO_x/SiO₂ are typically less than 1 s, and the pressures are typically less than 2 atm. Therefore only the contributions of the bare SiO₂ and supported MoO_x are considered in the modeling of CH₄ oxidation.

The kinetics of CH_4 oxidation over bare SiO_2 have been successfully described by Arena et al. with the use of a twosite, dissociative mechanism allowing for surface oxygen vacancies [10]. The model successfully described the extent of catalyst reduction observed by pulse O_2 chemisorption. The two-site dissociative mechanism includes the following reactions:

$$CH_4 + 2MO \rightarrow CH_2O + H_2O + 2M, \tag{1S}$$

$$CH_{2}O + \left(\frac{S_{CO} + 2S_{CO_{2}}}{S_{CO} + S_{CO_{2}}}\right)MO$$

$$\rightarrow CO_{x} + H_{2}O + \left(\frac{S_{CO} + 2S_{CO_{2}}}{S_{CO} + S_{CO_{2}}}\right)M,$$
(2S)

$$2M + O_2 \rightarrow 2MO. \tag{3S}$$

In these equations, MO represents an oxidized surface site and M a reduced surface site. The factor n_S is the moles of O₂ consumed per mole of CH₄ consumed. Oxidized and reduced active sites are taken to be the only surface species present and are thus conserved according to

$$\theta_{\rm ox} + \theta_{\rm red} = 1. \tag{10}$$

In Eq. (10), θ_{ox} is the fraction of active sites in the oxidized form (MO) and θ_{red} is the fraction of active sites in the reduced form (M).

The rates of reactions (1S) and (2S) are written as

$$r_{1\rm S} = k_{1\rm S} \, p_{\rm CH_4} \theta_{\rm ox}^2,\tag{11}$$

$$r_{3S} = k_{3S} p_{O_2} \theta_{\text{red}}^2 = k_{3S} p_{O_2} (1 - \theta_{\text{ox}})^2,$$
(12)

where r_{iS} is the reaction rate of reaction *i* on the SiO₂ surface, k_i is the corresponding rate constant, and p_j is the partial pressure of component *j*. We determined the fraction of the surface sites oxidized under given conditions θ_{ox} by equating the rates of surface reduction and oxidation at steady state:

$$n_{\rm S}r_{\rm 1S} = r_{\rm 3S}.$$
 (13)

The rate laws in Eqs. (11) and (12) are substituted into Eq. (13) and solved for θ_{ox} in terms of rate constants, partial pressures of CH₄ and O₂, and n_s . According to this kinetic scheme, θ_{ox} depends only on the ratio of partial pressures of CH₄ and O₂ [10].

If it is assumed that CO and CO₂ are formed exclusively by the reactions

$$CH_2O + MO \rightarrow CO + H_2O + M$$
,

$$CH_2O + 2MO \rightarrow CO_2 + H_2O + 2M$$

then $n_{\rm S}$ is related to the product distribution by

$$n_{\rm S} = S_{\rm CH_2O} + 1.5S_{\rm CO} + 2S_{\rm CO_2}.$$
 (14)

Therefore, n_S is 1 for a product distribution of 100% CH₂O and 1.5 for 100% CO. Arena et al. demonstrated that θ_{ox} is insensitive to n_S and used $n_S = 1.25$, based on an approximate product distribution of 50% CH₂O, 50% CO. We observed a value of $n_S \approx 1.18$ for CH₄ oxidation over SiO₂ for the range of CH₄ conversions over which rate data were fit. However, as discussed below, the reaction of CH₂O over SiO₂ does not appear to consume oxygen, and hence we took $n_S = 1$ in Eq. (13).

Rate data for the oxidation of CH₄ over bare SiO₂ at 873 K are shown in Fig. 6. We increased the CH₄/O₂ feed ratio from 1.6 to 7.5 by increasing the feed fraction of CH₄ from 19 to 87% while holding the O₂ feed fraction constant at 13% (the balance was He). We further increased the CH₄/O₂ feed ratio to 22.7 by decreasing the O₂ feed fraction. The CH₄ oxidation rate exhibits a maximum at CH₄/O₂ = 7.5, where both reactants are at their maximum values. The model represented by Eqs. (10)–(13) was fit to the data by adjustment of the values of k_{1S}

Fig. 6. Rate of CH₄ oxidation versus CH₄:O₂ ratio over bare SiO₂. CH₄ feed fraction was increased from 19 to 87% at 13% O₂ (balance He). CH₄ feed fraction was then held constant at 87% while O₂ feed fraction was reduced to 3.3% (balance He). Data recorded at 873 K with 0.65 s contact time. Model fit by varying k_{1S} and k_{3S} .

Fig. 7. Rate of CH₄ oxidation over bare SiO₂ versus temperature. Data recorded with 0.65 s contact time and feed composition of 87% CH₄, 13% O₂. Model fit by varying E_{1S} and E_{4S} .

and k_{4S} . As shown in Fig. 6, the model satisfactorily describes the CH₄ oxidation rate with respect to both reactants. Values of k_{1S} and k_{3S} at 873 K were found to be 0.122 and 50.3 µmol cm⁻³ atm⁻¹ s⁻¹, respectively (0.466 and 192 nmol m⁻² atm⁻¹ s⁻¹ when normalized by surface area). The ratio of the rate constants k_{1S}/k_{3S} is 0.0024, which is about 50% higher than the value of 0.00159 reported by Arena et al. [10] at 873 K. The temperature dependence of the CH₄ oxidation rate over bare SiO₂ is shown in Fig. 7. The two-site dissociative mechanism is fit to data with the assumption of Arrhenius forms for the rate constants k_{1S} and k_{3S} . A good fit to the data is obtained with values for the activation energies of $E_{1S} = 152$ kJ mol⁻¹ and $E_{3S} = 0$. These values of E_{1S} and E_{3S} are in reasonable agreement with the findings of Arena et al., who reported activation energies of 159 and 20 kJ mol⁻¹ for the respective reactions.

The speciation of the active sites on SiO_2 is plotted versus the CH_4/O_2 ratio at 923 K in Fig. 8. With the model formu-

Fig. 8. SiO₂ surface state predicted by model versus CH₄:O₂ ratio at 923 K.

Fig. 9. Rate of CH₄ oxidation versus CH₄:O₂ ratio over MoO_x/SiO₂. CH₄ feed fraction was increased from 20 to 90% at 10% O₂ (balance He). CH₄ feed fraction was then held constant at 90% while O₂ feed fraction was reduced to 2.7% (balance He). Data recorded at 873 K at 0.85 s contact time. Dashed line shows model treating kinetics over MoO_x with rate laws of the same form as those used for bare SiO₂. Solid line shows model accounting for surface carbonaceous species.

lated as described above, the speciation of active sites on the SiO_2 surface is completely specified by the CH_4/O_2 ratio. The fraction of oxidized sites predicted by the kinetic model falls from 88% at a CH_4/O_2 ratio of 2 to 67% at a CH_4/O_2 ratio of 33. Since the rate of CH₄ oxidation is proportional to the square of the fraction of oxidized sites, the rate of CH₄ oxidation decreases by 42%. The agreement between our model derived from kinetic observations and the pulse O_2 chemisorption observations of Arena et al. is quite good, but our model predicts a slightly more reduced surface over the range of CH_4/O_2 ratios for which data were available. At a CH₄/O₂ ratio of 8, our kinetic model predicts 20% surface vacancies, whereas O2 chemisorption data reported by Arena et al. demonstrate 17% vacancies [10]. This small discrepancy could be ascribed to the different sources of SiO2 in the two studies.

The rate of CH₄ oxidation over MoO_x/SiO_2 at 873 K is plotted versus the CH₄/O₂ ratio in Fig. 9. The exper-

imental conditions are the same as those employed in the experiments conducted over bare SiO₂ shown in Fig. 6. The CH₄ feed fraction is increased to raise the CH₄/O₂ feed ratio from 2 to 9, and we further raised the feed ratio by decreasing the O₂ feed fraction. The dashed line shows the best fit to the CH₄ oxidation rate data of a model formulated with the assumption that the rate laws for the reactions occurring on the supported MoO_x are of exactly the same form as those occurring on the SiO₂ surface (Eqs. (10)–(13)). It is evident that the two-site dissociative mechanism describing the SiO₂ surface is incapable of properly describing the kinetics occurring on the supported MoO_x. Although the general shape of the rate dependence is correct, the sensitivity of the rate to both the CH₄ and the O₂ partial pressures is too high.

To correctly model the kinetics occurring over the SiO₂supported MoO_x, the mechanism assumed for SiO₂ must be modified to include another kinetically relevant surface species. This can be done by assuming that CH₂O is formed in a two-step process. The CH₄ is assumed to adsorb dissociatively and reversibly to yield methoxide species, which are then oxidized to yield CH₂O:

$$CH_4 + MO \rightleftharpoons MOCH_3 + H_S,$$
 (0M)

$$MOCH_3 + MO \rightarrow CH_2O + M + MOH.$$
 (1M)

The oxidation of CH_2O over supported MoO_x and the reoxidation of MoO_x sites are assumed to occur via the following reactions:

$$CH_{2}O + \left(\frac{S_{CO} + 2S_{CO_{2}}}{S_{CO} + S_{CO_{2}}}\right)MO$$

$$\rightarrow CO_{x} + H_{2}O + \left(\frac{S_{CO} + 2S_{CO_{2}}}{S_{CO} + S_{CO_{2}}}\right)M,$$
(2M)

$$2M + O_2 \rightarrow 2MO. \tag{3M}$$

The factor $n_{\rm M}$ is the ratio of the moles of O₂ consumed per mole of CH₄ consumed on the supported MoO_x moieties. The hydrogen atom formed in reaction (0M) is assumed to be bonded to the oxygen of a cleaved Mo–O–Si bond. This surface hydrogen is assumed to react rapidly with MOH formed from the oxidation of surface methoxide in reaction (1M) to release H₂O:

$$H_S + MOH \rightarrow H_2O + M.$$
 (4M)

The surface-catalyzed oxidation of CH₄ to CH₂O and H₂O requires a four-electron reduction of the catalyst. Although the MoO_x sites of MoO_x/SiO₂ appear to be isolated as discussed above, the mechanism is written to include two molybdenum centers because MoO_x undergoes a twoelectron reduction from Mo^{VI} to Mo^{IV} under reducing conditions at temperatures relevant to CH₄ oxidation [26], and hence two MoO_x centers are required to accommodate the oxidation of CH₄ to CH₂O. While spectroscopic observations indicate that the MoO_x moieties do not share bridging oxo groups, these species remain in relatively close proximity after their formation from polymolybdate species. The so-called microspreading of the polymolybdate present on the hydrated catalyst precursor to yield isolated MoO_x is believed to be a short-range phenomenon [23]. It has been demonstrated that MoO_3 does not spread over macroscopic distances on SiO₂ [38] and that polymolybdate is regenerated upon exposure of isolated MoO_x/SiO_2 to hydrating conditions [22], suggesting a close proximity of isolated MoO_x moieties. Methoxide was chosen as the most reasonable intermediate because it has been observed upon adsorption of CH₄ at low temperatures over MoO_x/SiO_2 by IR spectroscopy [39].

The rate laws for the reactions occurring on supported MoO_x are written as

$$r_{\rm 0M} = k_{\rm 0Mf} p_{\rm CH_4} \phi_{\rm ox} - k_{\rm 0Mr} \phi_{\rm C}^2, \tag{15}$$

$$r_{1\mathrm{M}} = k_{1\mathrm{M}}\phi_{\mathrm{C}}\phi_{\mathrm{ox}},\tag{16}$$

$$r_{\rm 3M} = k_{\rm 3M} p_{\rm O_2} \phi_{\rm red}^2, \tag{17}$$

where ϕ_{ox} , ϕ_{C} , and ϕ_{red} are the fractions of MoO_x present as oxidized sites (MO), sites with adsorbed methoxide (MOCH₃), and vacant sites (M), respectively. The subscripts f and r in Eq. (15) denote the forward and reverse rate constants for the dissociative adsorption of CH₄. The secondorder dependence of the reverse reaction on $\phi_{\rm C}$ arises because the amount of surface hydrogen H_S is approximately equal to the amount of MOCH₃. Surface hydrogen is formed and consumed by adsorption and desorption of CH₄ at the same rates as MOCH₃. Assuming that reaction (4M) occurs rapidly, then as soon as MOH is formed by oxidation of methoxide, surface hydrogen is consumed to yield H₂O. Hence, the amount of surface hydrogen is approximately equal to the amount of methoxide, and the reverse rate of the dissociative adsorption is described as an elementary process that is second-order in $\phi_{\rm C}^2$ (see Eq. (15)).

To solve for ϕ_{ox} , ϕ_{red} , and ϕ_C , it is necessary to write three steady-state balances for surface species. Balances on MO, MOCH₃, and total sites provide the necessary equations:

$$2r_{\rm 3M} - r_{\rm 0Mf} + r_{\rm 0Mr} - (n_{\rm M} - 1)r_{\rm 1M} - (n_{\rm S} - 1)\zeta r_{\rm 1S} = 0,$$
(18)

$$r_{0Mf} - r_{0Mr} - r_{1M} = 0,$$
 (19)

$$\phi_{\rm ox} + \phi_{\rm red} + \phi_{\rm C} = 1. \tag{20}$$

The quantity $-(n_S - 1)\zeta r_{1S}$ is included in the balance on MO (Eq. (18)) because H₂ resulting from non-oxidative decomposition of CH₂O over the SiO₂ surface is oxidized to H₂O by MO (see below). Here n_S is calculated from the observed product distribution during CH₄ oxidation over bare SiO₂ (rather than using $n_S = 1$ as in Eq. (13)), and n_M is approximated from the observed product distribution during CH₄ oxidation over MoO_x/SiO₂, in the same way as n_S is in Eq. (14). Although n_M is not strictly specified as n_S is in Eq. (14), since it accounts only for the reactions occurring over the supported MoO_x, Eq. (14) provides a good approximation of n_M because the majority of CH₄ oxidation occurs on supported MoO_x and the product distributions over SiO₂ and MoO_x/SiO₂ are similar. The values of n_S and n_M are not

Fig. 10. Arrhenius plots of rate constants k_{0Mf} , k_{0Mr} , k_{1M} , and k_{3M} describing CH₄ oxidation over supported MoO_x. Data recorded with feed composition of 90% CH₄, 10% O₂ at 0.38 or 0.24 s contact time.

constant over the length of the reactor but are taken as constants because they vary only slightly and the kinetic model is insensitive to their values. For the small conversion levels at which these expressions were fit to experimental data, the values of $n_{\rm S}$ and $n_{\rm M}$ were taken as 1.18 and 1.24, respectively.

From a fit of the model to the data shown in Fig. 9, the values of the rate constants k_{0Mf} , k_{0Mr} , k_{1M} , and k_{3M} at 873 K were determined to be 1.35 μ mol cm⁻³ atm⁻¹ s⁻¹, 710 μ mol cm⁻³ s⁻¹, 40.6 μ mol cm⁻³ s⁻¹, and 178 μ mol $cm^{-3} atm^{-1} s^{-1}$, respectively. In order to calculate activation energies, we collected data similar to those shown in Fig. 9 at 848, 898, and 923 K. Values of the four rate constants were determined for each temperature; the values obtained are plotted in Fig. 10. Good linearity is observed for temperatures greater than 848 K. At 848 K the rates of reaction are relatively low, and the model begins to deviate from observations. The activation energies for the forward and reverse dissociative adsorption of CH_4 , E_{0Mf} and E_{0Mr} , were found to be 206 and 299 kJ mol⁻¹, respectively, indicating an enthalpy loss of 93 kJ mol⁻¹ upon dissociative adsorption of CH₄. The activation energy for oxidation of the surface methoxide species was found to be 269 kJ mol^{-1} . The rate of surface re-oxidation was practically unaffected by changes in temperature, and correspondingly E_{3M} is only 22.2 kJ mol^{-1} .

The fit of the model to the data is shown in Fig. 11 for temperatures between 848 and 923 K. The sensitivity of the rate of CH₄ oxidation to decreased oxygen partial pressure at high CH₄/O₂ ratios becomes greater at higher temperature. This is due in part to the greater decrease in O₂ partial pressure along the length of the reactor at higher rates, but is also due to the non-activated nature of the surface re-oxidation (reaction (3M)). The relatively large activation energies for

Fig. 11. Rate of CH₄ oxidation versus CH₄:O₂ ratio at temperatures of 848, 873, 898, and 923 K. Symbols are data; lines are model predictions using kinetic parameters extracted in Fig. 10. CH₄ feed fraction was increased from 20 to 90% at 10% O₂ (balance He). CH₄ feed fraction was then held constant at 90% while O₂ feed fraction was reduced to 3.3% (balance He). Data recorded at 0.38 s contact time at 848 and 873 K, and at 0.24 s contact time at 898 and 923 K.

Fig. 12. Model predictions of MoO_x site speciation versus $CH_4:O_2$ ratio during CH_4 oxidation at 873 K. CH_4 feed fraction increased from 0 to 90% while holding O_2 feed fraction constant at 10%, then O_2 feed fraction decreased from 10 to 2.5% while holding CH_4 feed fraction constant at 90% (balance He). Percentage of surface carbonaceous species amplified 10 times.

the reactions of CH₄ cause the rates of surface reduction to increase sharply with temperature, whereas the rate of surface re-oxidation does not increase appreciably with temperature. As a result, more surface vacancies are present at higher temperature for a given gas-phase composition. The speciation of MoO_x sites predicted by the kinetic model is shown in Fig. 12 versus gas composition at 873 K. Increasing the gas-phase fraction of CH₄ from 20 to 90% at 10% O₂ increases the fraction of MoO_x with oxygen vacancies from 12 to 20% and increases the fraction of MoO_x with adsorbed methoxide from 0.8 to 2.5%. Decreasing the gasphase O₂ fraction from 10 to 2.5% at 90% CH₄ results in a further increase of the fraction of vacancies to 34%. The fraction of MoO_x containing adsorbed methoxide species

Fig. 13. Extraction of kinetic orders α and β of the homogeneous CH₂O reaction. (*) varying CH₂O at 11% O₂ feed fraction and (---) linear fit with slope of 2.55; (**A**) varying O₂ feed fraction at 1.1% CH₂O feed fraction and (—) linear fit with slope of 0.61. Conversion of CH₂O was less than 20% throughout; conversion of O₂ was less than 2%. Recorded at 873 K, 1.62 atm absolute total pressure, and 0.9 s residence time.

decreases slightly to 2.4%, as fewer oxidized sites are available for dissociative adsorption of CH₄. Thus, the fraction of MoO_x sites available for CH₄ oxidation (oxidized sites) decreases with increasing CH₄ partial pressure or decreasing O₂ partial pressure. This is manifested in the observed negative curvature of the CH₄ oxidation rate with increased CH₄ feed fraction and in the decreased CH₄ oxidation rate with decreased O₂ feed fraction.

4.4. Reactions of formaldehyde

The reaction of CH₂O over bare silica or supported MoO_x/SiO_2 has not received nearly the attention dedicated to the oxidation of CH₄ over the same catalysts, and hence the rate laws for the reaction of CH₂O are not as well known as those for CH₄ oxidation. Useful information regarding the rate laws was obtained from reaction of CH₂O/O₂/He mixtures over these catalysts at temperatures relevant to CH₄ oxidation. The homogeneous reaction of CH₂O was also investigated under the same reaction conditions to determine its relative importance during oxidation over the solid catalysts.

The homogeneous reaction of CH₂O produces CO_x , typically with a carbon selectivity of > 90% CO and < 10% CO₂. The homogeneous reaction proceeds via a radical network [8] and was modeled by a fit of rate data to an empirical rate law:

$$r_{\rm 2H} = k_{\rm 2H} p^{\alpha}_{\rm CH_2O} p^{\beta}_{\rm O_2}.$$
 (21)

Fig. 13 shows rate data for homogeneous CH₂O reaction versus the mean CH₂O and O₂ molar fractions. The kinetic orders were extracted from the log–log plot shown rather than by use of a PFR model because the data showed good linearity on the log–log plot, and the additional precision afforded by the PFR model was deemed unnecessary. The data are well represented by Eq. (21) with $\alpha = 2.55$, $\beta = 0.61$, and $k_{2H} = 5.2 \times 10^{-3} \text{ mol cm}^{-3} \text{ atm}^{-3.16} \text{ s}^{-1}$.

Fig. 14. Arrhenius plot of homogeneous CH_2O reaction rate. Feed composed of 1.1% CH_2O , 11% O_2 , balance He at 1.62 atm absolute total pressure, 0.9 s residence time.

Fig. 15. Extraction of kinetic orders of CH₂O reaction with respect to CH₂O over bare SiO₂ and MoO_x/SiO₂. Varying CH₂O feed fraction at 11% O₂, balance He at 873 K. (•) Data recorded over bare SiO₂ and (—) linear fit with slope of 0.93; (**■**) data recorded over MoO_x/SiO₂ and (---) linear fit with slope of 0.98.

The large value of α is consistent with the observation of increased CH₂O conversion with increased CH₂O partial pressure made by Baldwin et al. [9]. The large exponent is attributable to the multiple roles of CH₂O and its fragments in the CH₂O reaction network. An Arrhenius plot of k_{2H} versus temperature for temperatures of 848 K to 923 K is shown as Fig. 14. The activation energy determined from the slope of this plot is 231 kJ mol⁻¹. This is higher than the values of 96 to 109 kJ mol⁻¹ reported by other workers at temperatures of 573 to 823 K, but is comparable to the value of 209 kJ mol⁻¹ reported for reaction vessels coated with "oxidation inhibitors" to suppress reactions occurring on the vessel walls [8].

Fig. 15 shows the dependence of the rate of CH₂O consumption at 873 K on the CH₂O feed fraction for reaction over bare SiO₂ and over MoO_x/SiO₂. The reaction obeys

Fig. 16. Rate of CH₂O consumption versus O₂ feed fraction at 873 K with 1.1% CH₂O feed fraction. (•) Data recorded over bare SiO₂ and (—) model fit by varying k_{2S} ; (**1**) data recorded over MoO_x/SiO₂ and (---) model fit by varying $k_{2M}^{(0)}$ and $k_{2M}^{(1)}$.

Table 2 Mean rates of CH₂O reaction at 873 K with 1.1% CH₂O feed fraction

Catalyst	$r_{\rm CH_2O}$ (µmol cm ⁻	$r_{\rm CH_2O} \ (\mu {\rm mol} {\rm cm}^{-3} {\rm s}^{-1})$		
	11% O ₂	No O ₂		
Empty tube	0.043	0.005		
SiO ₂	0.20	0.19		
MoO_x/SiO_2	0.95	0.49		

first-order kinetics with respect to CH_2O over both SiO_2 and MoO_x/SiO_2 , so linear regression of log–log data of the CH_2O consumption rate versus CH_2O feed fraction yields a slope of very nearly 1 in both cases.

The rate of CH₂O consumption at 873 K over bare SiO₂ and over MoO_x/SiO_2 is shown in Fig. 16 as a function of the fraction of O₂ in the feed. With no O₂ in the feed, CO and H₂ are produced in equivalent quantities, consistent with the pyrolytic decomposition of CH₂O:

 $CH_2O \rightarrow CO + H_2.$

When bare SiO₂ is used as the catalyst, the rate of CH₂O consumption increases very slightly with increasing O₂ feed fraction, and only a small fraction (~ 20%) of the H₂ generated is oxidized. The decomposition of CH₂O also occurs over the MoO_x moieties, as indicated by the increase in the rate of CH₂O decomposition in the absence of O₂ over MoO_x/SiO₂ (0.49 µmol cm⁻³ s⁻¹ relative to the rate over bare SiO₂ (0.19 µmol cm⁻³ s⁻¹). As O₂ is added to the feed, the rate of CH₂O consumption over MoO_x/SiO₂ increases by almost a factor of 2 to 0.95 µmol cm⁻³ s⁻¹, and all H₂ formed is combusted to H₂O. In separate experiments in which H₂/O₂ mixtures were fed to the reactor, it was confirmed that the rate of H₂ combustion was very small over bare SiO₂ but comparable to the rate of cH₂O over MoO_x/SiO₂.

The mean reaction rates observed at the highest (11%) and lowest (0%) O₂ feed fractions studied are summarized in Table 2. The homogeneous reaction of CH₂O proceeds much more slowly than the reaction in the presence of either solid catalyst.

The rate laws utilized by Arena et al. [11] and Amiridis et al. [13] to describe CH₂O consumption during CH₄ oxidation over SiO_2 and MoO_x/SiO_2 , respectively, assume that the reaction is oxidative and requires one surface oxygen to proceed (see reactions (2S) and (2M) above). Such rate laws will work as long as the fraction of oxidized surface sites does not vary greatly from the value for the reaction conditions under which the rate constant was determined. However, these rate laws will fail when the distribution of surface species deviates significantly because of changes in coverage by carbonaceous species or oxygen vacancies. A more physically meaningful model for the rate of CH₂O consumption can be constructed with the incorporation of terms into the rate expressions for CH₂O consumption accounting for the nonoxidative decomposition of CH₂O to CO. The following rate laws are therefore proposed to describe the reaction rates of CH_2O over bare SiO_2 and MoO_x/SiO_2 , respectively:

$$r_{2S} = k_{2S} \, p_{\rm CH_2O},\tag{22}$$

$$r_{\rm 2M} = k_{\rm 2M}^{(0)} p_{\rm CH_2O} \phi_{\rm red} + k_{\rm 2M}^{(1)} p_{\rm CH_2O} \phi_{\rm ox}.$$
 (23)

The rate law for CH₂O decomposition over SiO₂ is taken to be independent of the speciation of the active sites on SiO₂, consistent with the observed insensitivity of the reaction rate of CH₂O to the O₂ partial pressure over bare SiO₂. The (0) and (1) superscripts on k_{2M} in Eq. (23) refer to the rate constants for CH₂O decomposition and oxidation, respectively, on the supported MoO_x domains. The terms are assumed to represent, respectively, the activities of the reduced (M) sites and oxidized (MO) sites of the supported MoO_x as presented in the CH₄ oxidation model above.

The rate law for CH₂O decomposition over SiO₂ (Eq. (22)) was fit to the rate data for CH₂O over bare SiO₂ at 873 K shown in Fig. 16 by adjustment of the rate constant k_{2S} . The rate law for CH₂O reaction over the supported MoO_x moieties (Eq. (23)) was then fit to the corresponding rate data obtained over MoO_x/SiO₂ by adjustment of $k_{2M}^{(0)}$ and $k_{2M}^{(1)}$. A surface oxygen balance similar to Eq. (18) was utilized to track the fraction of oxygen vacancies on the supported MoO_x. The balance was constructed by equating the rate of MoO_x reduction by CH₂O and by the H₂ produced from non-oxidative CH₂O decomposition to the rate of Surface re-oxidation already specified by the fit of CH₄ oxidation data:

 $2r_{\rm 3M} - r_{\rm 2M} - \zeta r_{\rm 2S} = 0. \tag{24}$

It was assumed that no carbonaceous species are present on MoO_x sites during CH₂O oxidation because CH₂O is weakly adsorbed on oxides [13,40,41]. Eq. (24) is used together with the site conservation statement given by Eq. (20), taking $\phi_{\rm C} = 0$. A similar balance is not necessary for the SiO₂, since the decomposition of CH₂O over SiO₂ is independent of the fraction of sites oxidized on SiO₂. The predictions of the model take into account contributions due to homogeneous reactions and reactions occurring on exposed

Fig. 17. Rate of CH₂O reaction versus temperature for reaction of CH₂O over (\bullet) bare SiO₂ and (—) model fit by varying E_{2S} ; (\blacksquare) MoO_x/SiO₂ and (--) model fit by varying $E_{2M}^{(0)}$ and $E_{2M}^{(1)}$. Feed composition was 1.1% CH₂O, 11.5% O₂ (balance He).

SiO₂ and MoO_x, as described by Eqs. (5) and (6). The resulting fits of the model are shown with the rate data in Fig. 16. The best fits were obtained with rate constants of $k_{2S} = 18.3 \,\mu\text{mol}\,\text{cm}^{-3}\,\text{s}^{-1}$, $k_{2M}^{(0)} = 7.91 \,\mu\text{mol}\,\text{cm}^{-3}\,\text{atm}^{-1}\,\text{s}^{-1}$, and $k_{2M}^{(1)} = 24.5 \,\mu\text{mol}\,\text{cm}^{-3}\,\text{atm}^{-1}\,\text{s}^{-1}$.

The O₂ dependence of the homogeneous reaction of CH₂O appears to account for the very slight increase in the rate of CH₂O consumption as the O₂ feed fraction is increased over bare SiO2. The dependence of the CH2O reaction rate over MoO_x/SiO_2 with respect to O_2 feed fraction is captured by the model, but the rate rises too sharply with O₂ feed fraction before reaching a plateau. This deviation is the result of a similar trend in fractional oxygen coverage, which rises very sharply with O₂ feed fraction at small O_2 feed fractions because the rate constant k_{3M} is large relative to the rate constants $k_{2M}^{(0)}$ and $k_{2M}^{(1)}$. Although the fit is not exact, the rate derived from the model deviates by less than 10% on a relative basis over the range of O₂ feed fractions studied. Furthermore, the fit obtained from Eq. (23) is not worse at any O₂ feed fraction than a fit obtained with the use of a rate law that does not include a non-oxidative component and provides a better fit at very small O₂/CH₂O ratios where surface oxygen vacancies become significant. As demonstrated in Fig. 12, the fraction of surface vacancies can be quite significant and can vary significantly with gas composition and temperature during CH₄ oxidation.

The temperature dependence of the CH₂O consumption rate over SiO₂ and over supported MoO_x was modeled with the assumption that the rate constants k_{2S} , $k_{2M}^{(0)}$, and $k_{2M}^{(1)}$ obey Arrhenius expressions, in which the corresponding activation energies are E_{2S} , $E_{2M}^{(0)}$, and $E_{2M}^{(1)}$. E_{2S} was fit to rate data obtained over bare SiO₂ at various temperatures, and then $E_{2M}^{(0)}$ and $E_{2M}^{(1)}$ were fit to similar data obtained over MoO_x/SiO₂. The resulting fits of the model to the experimental data are shown in Fig. 17. The activation energies used in the model are $E_{2S} = 109$ kJ mol⁻¹, $E_{2M}^{(0)} = 125$ kJ mol⁻¹, and $E_{2M}^{(1)} = 120$ kJ mol⁻¹. The rate data appear to be well described by Eqs. (22) and (23).

The observations made here allow us to challenge two assertions made in the literature concerning CH₂O reaction at temperatures relevant to CH₄ oxidation. The first is that the reaction of CH_2O with O_2 proceeds over SiO_2 by a heterogeneous-homogeneous reaction mechanism, in which the SiO₂ surface initiates the formation of free radicals that decompose CH_2O in the gas phase [6]. This assertion was based on the observation by mass spectrometry of HO₂· radicals at a number density of about 10^{13} cm⁻³ during the oxidation of CH₂O over bare SiO₂ at 873 K. Inserting this concentration of HO_2 into the rate law reported by Eiteneer et al. [42] for the decomposition of CH_2O by HO_2 , we estimate the rate of CH₂O decomposition at 873 K and 1.5 atm for a feed containing 1% CH₂O to be 0.01 μ mol cm⁻³ s⁻¹. This is about four orders of magnitude less than the rates observed over SiO₂ in the present study, which suggests that the HO₂ · observed by Nersessian et al. is kinetically irrelevant. It can similarly be demonstrated with the use of combustion kinetic data [43] that the concentration of H. necessary to produce the observed concentration of HO_2 · is much too small to decompose CH2O at the observed reaction rate. These conclusions are supported by our observations of the change in the order of reaction with respect to CH₂O from 2.55 to 1.0 as we go from homogeneous CH₂O oxidation to heterogeneous CH₂O oxidation over SiO₂. The reduction in the reaction order in the presence of SiO_2 may be caused by quenching of the radical mechanism by radical recombination on the SiO₂ surface [9] or simply by the firstorder heterogeneous reaction proceeding at a much greater rate than the higher-order homogeneous reaction.

Bañares and Fierro have also claimed that the reaction of CH_2O over MoO_x/SiO_2 proceeds primarily in the gas phase based on their observations regarding the deleterious effects of a heated post-reactor volume on the CH2O selectivity during CH₄ oxidation [7]. While homogeneous reaction can indeed destroy an appreciable amount of CH₂O given sufficient contact time, the present investigation has shown that the void volume within the packed bed is insufficient for the homogeneous reaction to contribute appreciably to the consumption of CH2O for the feed rates studied. Careful attention to reactor design, as described by Bañares and Fierro (exclusion of post-reactor volume and use of small-ID tubing to transport the products rapidly out of the heated zone), is important for minimization of the effects of the homogeneous reaction downstream of the catalyst bed, but within the catalyst the homogeneous component of the reaction appears to be insignificant.

4.5. Model analysis

The kinetic parameters and the rate laws describing the consumption of CH_4 and CH_2O are summarized in Table 3. This information can now be used to simulate the observed trends in CH_4 conversion and CH_2O selectivity versus contact time. To utilize the model in a predictive fashion, we cast the surface oxygen balances in terms of the rates of surface

Summary of k	cinetic parameters					
Rate	Kinetic	Rate constant at 873 K			Pre-exponential	Activation
constant	group	k _i (873 K)	<i>k</i> ['] ₁ (873 K)	k'' (873 K)	factor, A_i	energy, E _i
$CH_4 \rightarrow CH_2($	0					
č1S	$p_{\mathrm{CH}_4} heta_{\mathrm{ox}}^2$	$0.122 \ \mu mol \ cm^{-3} \ atm^{-1} \ s^{-1}$	$0.466 \mathrm{nmol}\mathrm{m}^{-2}\mathrm{atm}^{-1}\mathrm{s}^{-1}$	1	$145 \text{ mol cm}^{-3} \text{ atm}^{-1} \text{s}^{-1}$	152 kJ mol^{-1}
^c OMf	$P C H_4 \phi_{OX}$	$1.35 \ \mu mol \ cm^{-3} \ atm^{-1} \ s^{-1}$	I	$6.44 \times 10^{-3} \text{ mol mol}_{Mo}^{-1} \text{ atm}^{-1} \text{s}^{-1}$	$2.86 \times 10^{6} \mathrm{ \ mol \ cm^{-3} \ atm^{-1} \ s^{-1}}$	206 kJ mol^{-1}
^c OMr	$\phi_{C}\phi_{H}$	710 μ mol cm ⁻³ s ⁻¹	1	$3.39 \text{ mol mol}_{M_0}^{-1} \text{ s}^{-1}$	$5.72 \times 10^{14} \mathrm{mol}\mathrm{cm}^{-3}\mathrm{s}^{-1}$	299 kJ mol^{-1}
k1M	φοχφC	$40.6 \ \mu mol \ cm^{-3} \ s^{-1}$	I	$0.194 \text{ mol mol}_{M_0}^{-1} \text{ s}^{-1}$	$4.77 \times 10^{11} \mathrm{mol} \mathrm{cm}^{-3} \mathrm{s}^{-1}$	269 kJ mol^{-1}
$CH_2O \rightarrow CO$,r					
^k 2H	$p_{ m CH_2O}^{2.65} D_{ m O_2}^{0.55}$	$5.2 \times 10^{-3} \ \mu mol \ cm^{-3} \ atm^{-3.16} \ s^{-1}$	I	I	$3.54 \times 10^{11} \mathrm{\ mol\ cm^{-3}\ atm^{-3.16}\ s^{-1}}$	231 kJ mol^{-1}
¢2S	PCH_2O	$18.3 \ \mu mol \ cm^{-3} \ atm^{-1} \ s^{-1}$	$58.3 \text{ nmol m}^{-2} \text{ atm}^{-1} \text{ s}^{-1}$	1	$57.3 \text{ mol cm}^{-3} \text{ atm}^{-1} \text{s}^{-1}$	109 kJ mol^{-1}
(0) 2M	$P_{CH_2O\phi_{red}}$	$7.91 \text{ µmol cm}^{-3} \text{ atm}^{-1} \text{s}^{-1}$	I	$0.0390 \text{ mol mol}_{M_{O}}^{-1} \text{ atm}^{-1} \text{s}^{-1}$	$237 \text{ mol cm}^{-3} \text{ atm}^{-1} \text{s}^{-1}$	125 kJ mol^{-1}
$\epsilon_{2M}^{(1)}$	$PCH_2O\phi_{\rm ox}$	$24.5 \ \mu mol \ cm^{-3} \ atm^{-1} s^{-1}$	1	$0.117 \text{ mol mol}_{M_0}^{-1} \text{ atm}^{-1} \text{s}^{-1}$	$1690 \text{ mol cm}^{-3} \text{ atm}^{-1} \text{s}^{-1}$	131 kJ mol ⁻¹
M → MO						
^{¢3S}	$P_{02}\theta_{\mathrm{red}}^2$	$50.3 \ \mu mol \ cm^{-3} \ atm^{-1} s^{-1}$	$192 \text{ nmol m}^{-2} \text{ atm}^{-1} \text{s}^{-1}$	1	$5.03 \times 10^{-5} \text{ mol cm}^{-3} \text{ atm}^{-1} \text{ s}^{-1}$	0 kJ mol^{-1}
k3M	$p_{\rm O_2} \phi_{\rm red}^2$	$178 \ \mu mol \ cm^{-3} \ atm^{-1} \ s^{-1}$	I	$0.850 \text{ mol mol}_{Mo}^{-1} \text{ atm}^{-1} \text{ s}^{-1}$	$3.80 \times 10^{-3} \text{ mol cm}^{-3} \text{ atm}^{-1} \text{ s}^{-1}$	22.2 kJ mol^{-1}

Table 3

Fig. 18. CH₄ conversion and CH₂O selectivity during CH₄ oxidation over bare SiO₂ at 873 K with feed consisting of 90% CH₄, 10% O₂. (\blacklozenge) Observed CH₄ conversion and (—) model prediction; (\blacktriangle) observed CH₂O selectivity and (---) model prediction.

reduction and oxidation, rather than in terms of the parameter n_i . The balance on oxidized MoO_x sites (Eq. (18)) is re-written as

$$2r_{3M} - r_{0Mf} + r_{0Mr} - r_{1M} - \left(\frac{S_{CO} + 2S_{CO_2}}{S_{CO} + S_{CO_2}}\right)r_{2M} - \zeta r_{2S} = 0.$$
(25)

The CH₂O consumed by non-oxidative processes over both exposed SiO₂ and supported MoO_x is accounted for in the MoO_x oxygen balance because the H₂ produced by these processes is oxidized to H_2O over MoO_x . The bracketed term in Eq. (25) accounts for the additional surface oxygen consumed in the generation of CO₂. The product distribution during the oxidation of CH_2O over MoO_x/SiO_2 is typically 90% CO, 10% CO₂, so the bracketed term is approximated as 1.1. This is a good approximation because the term varies weakly with the product distribution (going from 1.1 at a CO/CO_2 ratio of 9 to 1.2 at a CO/CO_2 ratio of 6). At contact times shorter than the time of maximum CH₂O yield, this assumption is even more appropriate because the rate of CH₄ oxidation is faster than the rate of CH₂O consumption. For SiO_2 , it was possible to continue using Eq. (13) with $n_{\rm S} = 1$, since CH₂O decomposition does not consume surface oxygen.

Comparisons of the model predictions with experimental data observed during CH₄ oxidation over bare SiO₂ are shown in Fig. 18. Consumption of both CH₄ and CH₂O appears to occur somewhat more slowly over the bare SiO₂ than is predicted by the model. The predicted CH₄ conversion is about 33% higher than the observed rate at a contact time of 1.25 s, and the predicted CH₂O selectivity is about 33% lower than the observed selectivity. The model predictions are better at shorter times. The deviation may be due in part to experimental error and may also be related to the variation in H₂O partial pressure with contact time, as H₂O is unaccounted for in the model and may in fact inhibit CH₄ oxidation. Because the rate of CH₄ oxidation over SiO₂ is small relative to the corresponding rate over supported MoO_x, this deviation is not of great concern. It

Fig. 19. CH₄ conversion and CH₂O selectivity during CH₄ oxidation over MoO_x/SiO_2 at 873 K with feed consisting of 90% CH₄, 10% O₂. (\blacklozenge) Observed CH₄ conversion and (—) model prediction; (\blacktriangle) observed CH₂O selectivity and (---) model prediction.

Fig. 20. Model predictions of maximum CH_2O yield with respect to contact time versus CH_4 feed fraction at various temperatures. O_2 feed fraction held constant at 10%, total pressure of 1.5 atm absolute.

should be noted that the predicted CH_2O selectivity versus CH_4 conversion is excellent, as the observed rate of CH_2O decomposition (as measured by the CH_2O selectivity) is slower by approximately the same factor as the observed rate of CH_4 oxidation.

The predicted trends for CH₄ oxidation over MoO_x/SiO_2 at 873 K with 90% CH₄, 10% O₂ are compared with the observed data in Fig. 19. The model predictions are in very good agreement with observations of both CH₄ conversion and CH₂O selectivity over the entire range of the data. Deviations are less than 10 relative % over the entire range.

Since the model provides a good description of CH₄ conversion and CH₂O selectivity for MoO_x/SiO_2 and was developed from observations made over a wide range of temperatures and gas-phase compositions, it can be used to assess the impact of reaction conditions on the CH₂O yield. Fig. 20 shows the effects of both feed composition and temperature on the maximum single-pass yield achievable with respect to contact time over MoO_x/SiO_2 . The highest single-pass yields are possible when the rate of CH₄ oxidation is maximized relative to the rate of CH₂O consumption. The rate of CH₄ oxidation is more sensitive to the fraction of oxidized sites than is the rate of reaction of oxidized sites

Fig. 21. Mean rates of CH₄ oxidation and CH₂O consumption in each of the reactive media versus contact time at 923 K, 1.5 atm during CH₄ oxidation with feed composed of 20% CH₄, 10% O₂ (balance He). The slope of the top curve in each plot is the total local rate. The maximum CH₂O yield occurs at 0.29 s under these conditions, where the total local rates of CH₄ oxidation and CH₂O consumption are equal.

over the exposed SiO₂ and pseudo-second-order in the fraction of oxidized sites over MoO_x , whereas reaction of CH_2O is independent of the fraction of oxidized sites over SiO₂ and first-order in the fraction of oxidized sites over MoO_x . Hence the maximum single-pass yield achievable increases with decreasing CH_4/O_2 ratio as the surface fractions of oxidized sites become greater. At 923 K, the maximum possible CH₂O yield increases from 2.0 to 5.1% as the CH₄ feed fraction is decreased from 90 to 1% while the O₂ feed fraction is held constant at 10%. Because the activation energies for CH₄ oxidation are large relative to the activation energies for CH₂O decomposition and oxidation, the rate of CH₄ oxidation increases faster than the rate of CH2O consumption with increasing temperature, so the maximum possible yield increases with temperature. This effect is much more pronounced at small CH₄/O₂ ratios. High CH₄/O₂ ratios diminish the effect of increasing temperature, as the balance of surface sites is shifted away from oxidized sites under these conditions. With a feed composed of 1% CH₄, 10% O₂, the maximum CH₂O yield increases from 2.2% at 848 K to 7.8% at 973 K, but with a feed composed of 90% CH₄, 10% O₂, the maximum CH₂O yield only increases from 1.2 to 2.0%. This is consistent with the observations of Spencer and Pereira, who observed only a very slight increase in the profile of CH₂O selectivity versus CH₄ conversion with increasing temperature when they conducted experiments at a CH_4/O_2 ratio of 9 [14].

Fig. 22. Maximum CH₂O yield with respect to contact time versus CH₄:O₂ ratio for CH₄ oxidation at 973 K, 1.5 atm with 10% O₂ feed fraction over MoO_x/SiO_2 . (—) All reaction pathways active (real system as modeled); (---) SiO₂ pathways inactive.

Having defined the contributions of the gas-phase, support, and supported MoO_x , it is possible to isolate the intrinsic activity of the supported MoO_x . Fig. 21 shows the contribution of each locus of reaction on the total rates of reaction during CH₄ oxidation at 923 K for a feed composed of 20% CH₄, 10% O₂. These contributions were determined by constructing the gas-phase and surface species profiles versus contact time, integrating the local rates of reaction in each of the reactive media over the length of the reactor, and normalizing by the total contact time. The observed rate of reaction is the sum over $\langle r_i \rangle$ for reaction occurring in the gas phase, on the exposed SiO₂, and on the supported MoO_x.

$$\langle r_i \rangle = \frac{1}{\tau} \int_0^\tau r_i(\tau') \,\mathrm{d}\tau'. \tag{26}$$

The overall rate of reaction is given by the uppermost curve in Fig. 21. The rate of reaction at a given contact time within the reactor is proportional to the slope of the uppermost curve, and the maximum yield is obtained when the slopes of the CH₂O consumption rate and CH₄ oxidation rate are equal but opposite. This occurs at $\tau = 0.29$ s for the conditions shown in Fig. 21. At this contact time, the mean CH_4 oxidation rate over the supported MoO_x is 1.17 μ mol cm⁻³ s⁻¹, whereas the mean rate of CH₄ oxidation over the exposed SiO₂ is only 0.082 μ mol cm⁻³ s⁻¹. The mean rates of CH₂O consumption at this contact time are 0.483, 0.358, and 0.041 μ mol cm⁻³ s⁻¹ on the MoO_x, on the exposed SiO₂, and in the gas-phase, respectively. Hence the effect of the exposed SiO₂ on the observed activity is deleterious, as it contributes to the consumption of CH₂O to a greater extent than it does to the formation of CH₂O.

To determine the activity of MoO_x on a completely inert support, the rates of the reactions over SiO₂ are set to zero in the model. The resulting increase in the maximum CH₂O yield with respect to contact time is plotted in Fig. 22 versus the CH₄ feed fraction at 973 K while the O₂ feed fraction is held constant at 10%. When a completely inert support is used, the maximum CH₂O yield increases from 7.8 to 10.5% at 1% CH₄, or from 2.0 to 2.5% at 90% CH₄.

5. Conclusions

A model has been developed to describe the kinetics of the selective oxidation of methane to formaldehyde over MoO_x/SiO_2 . This model accounts for the reactions of methane and formaldehyde occurring in the gas phase and on the surfaces of the silica support and the dispersed molybdena. The overall rate of reaction, predicted by the model as the sum of the rates of reaction proceeding in the gas phase and on the catalyst surface, very accurately describes the rate of CH₄ oxidation and the selectivity of the products for CH₂O observed experimentally. Since the kinetics of homogeneous reaction and heterogeneous reaction occurring on SiO₂ and MoO_x are each known, it is possible to use the model to assess the importance of each contribution to the overall performance of the catalyst.

The oxidation of CH₄ is found to proceed almost exclusively over the supported molybdena. The rate of homogeneous oxidation is negligible at the pressures used in this study, and the rate of CH₄ oxidation over bare SiO₂ is about an order of magnitude less than that over the supported MoO_x. Although the rate of gas-phase CH₂O oxidation is measurable, the void volume within the catalyst is insufficient for this process to make a significant contribution to overall rate of CH₂O consumption. The principal process occurring over bare SiO₂ is CH₂O decomposition to form CO and H₂. Even in the presence of excess O₂, very little of the H₂ undergoes combustion. CH₂O decomposition also occurs on the supported MoO_x. When O₂ is present in the feed, all of the H₂ formed from CH₂O decomposition is combusted on the supported MoO_x.

The maximum single-pass conversion of CH₄ to CH₂O is strongly influenced by temperature and CH₄/O₂ ratio in the feed. The maximum single-pass yield increases with increasing temperature and decreasing CH₄/O₂ ratio. For the catalyst studied a maximum CH₂O yield of 7.0% could be achieved at a temperature of 973 K with a feed composed of 5% CH₄ and 10% O₂ in He. A further gain of 2.5% could be achieved if the surface of SiO₂ were made completely inactive.

Acknowledgment

This work was supported by the Methane Conversion Cooperative sponsored by BP.

References

- [1] T.H. Fleisch, R. Puri, R.A. Sills, A. Basu, M. Gradassi, G.R. Jones Jr., in: J.J. Spivey, E. Iglesia, T.H. Fleisch (Eds.), Natural Gas Conversion VI, in: Studies in Surface Science and Catalysis, vol. 136, Elsevier Science B.V., Amsterdam, 2001, p. 423.
- [2] R. Pitchai, K. Klier, Catal. Rev.-Sci. Eng. 28 (1986) 13.
- [3] K. Otsuka, Y. Wang, Appl. Catal. A 222 (2001) 145.
- [4] A. Parmaliana, F. Arena, F. Frusteri, A. Martinez-Arias, M.L. Granados, J.L.G. Fierro, Appl. Catal. A 226 (2002) 163.

- [5] W.-H. Cheng, J. Catal. 158 (1996) 477.
- [6] L.A. Nersessian, A.A. Muradian, T.A. Gharibian, L.Y. Margolis, A.B. Nalbandian, Arm. Khim. 31 (1978) 33.
- [7] M.A. Bañares, J.L.G. Fierro, in: T. Oyama, J.W. Hightower (Eds.), Catalytic Selective Oxidation, in: ACS Symposium Series, vol. 523, ACS, Washington, D.C., 1993, p. 354.
- [8] J.F. Walker, Formaldehyde, third ed., ACS Monograph Series, Reinhold, New York, 1964, p. 210.
- [9] T.R. Baldwin, R. Burch, G.D. Squire, S.C. Tsang, Appl. Catal. 74 (1991) 137.
- [10] F. Arena, F. Frusteri, A. Parmaliana, AIChE J. 46 (11) (2000) 2285.
- [11] F. Arena, F. Frusteri, A. Parmaliana, J. Catal. 207 (2002) 232.
- [12] D. Miceli, F. Arena, A. Parmaliana, M.S. Scurrell, V. Sokolovskii,
- Catal. Lett. 18 (1993) 283. [13] M.D. Amiridis, J.E. Rekoske, J.A. Dumesic, D.F. Rudd, N.D. Spencer, C.J. Pereira, AIChE J. 37 (1991) 87.
- [14] N.D. Spencer, J. Catal. 109 (1988) 187.
- [15] N.D. Spencer, C.J. Pereira, R.K. Graselli, J. Catal. 126 (1990) 546.
- [16] G.F. Froment, K.B. Bischoff, Chemical Reactor Analysis and Design, second ed., Wiley, New York, 1990, p. 166.
- [17] G.C. Bond, S. Flamerz, L.V. Wijk, Catal. Today 1 (1987) 229.
- [18] F.L. Galeener, A.E. Geissberger, Phys. Rev. B 27 (10) (1983) 6199.
- [19] J.C. Phillips, Phys. Rev. B 35 (12) (1987) 6409.
- [20] F.L. Galeener, R.H. Geils, in: P.H. Gaskell (Ed.), The Structure of Non-Crystalline Materials, Taylor and Francis, London, 1977, p. 223.
- [21] G. Mestl, T.K.K. Srinivasan, Catal. Rev.-Sci. Eng. 40 (4) (1998) 451.
- [22] M.A. Bañares, I.E. Wachs, J. Raman Spectrosc. 33 (2002) 359.
- [23] M. de Boer, A.J. van Dillen, D.C. Koningsberger, J.W. Geus, M.A. Vuurman, I.E. Wachs, Catal. Lett. 11 (1991) 227.
- [24] M.A. Bañares, N.D. Spencer, M.D. Jones, I.E. Wachs, J. Catal. 146 (1994) 204.

- [25] M.A. Bañares, H. Hu, I.E. Wachs, J. Catal. 150 (1994) 407.
- [26] A.N. Desikan, L. Huang, S.T. Oyama, J. Phys. Chem. 95 (1991) 10050.
- [27] Y. Iwasawa, Adv. Catal. 35 (1987) 187.
- [28] M. Cornac, A. Janin, J.C. Lavalley, Polyhedron 5 (1-2) (1986) 183.
- [29] C.C. Williams, J.G. Ekerdt, J. Phys. Chem. 95 (1991) 8781.
- [30] G. Martra, P. Vittone, S. Coluccia, F. Arena, A. Parmaliana, Il Nuovo Cimento 19 (11) (1997) 1727.
- [31] H. Hu, I.E. Wachs, S.R. Bare, J. Phys. Chem. 99 (1995) 10897.
- [32] M. Fournier, C. Louis, M. Che, P. Chaquin, D. Masure, J. Catal. 119 (1989) 400.
- [33] K. Chen, E. Iglesia, A.T. Bell, J. Phys. Chem. 104 (2000) 10059.
- [34] M.A. Bañares, I. Rodriguez-Ramos, A. Guerrero-Ruiz, J.L.G. Fierro, in: L. Guczi (Ed.), New Frontiers in Catalysis, Proceedings of the 10th International Congress on Catalysis, in: Studies in Surface Science and Catalysis, vol. 75, Elsevier, Amsterdam, 1993, p. 1131.
- [35] A. Parmaliana, V. Sokolovskii, D. Miceli, F. Arena, N. Giordano, J. Catal. 148 (1994) 514.
- [36] F. Arena, F. Frusteri, A. Parmaliana, N. Giordano, Appl. Catal. 125 (1995) 39.
- [37] N.D. Spencer, C.J. Pereira, AIChE J. 33 (1987) 1808.
- [38] J. Leyrer, D. Mey, H. Knözinger, J. Catal. 124 (1990) 349.
- [39] H.-F. Liu, R.-S. Liu, K.Y. Liew, R.E. Johnson, J.H. Lunsford, J. Am. Chem. Soc. 106 (1984) 4117.
- [40] F.S. Feil, J.G. van Ommen, J.R.H. Ross, Langmuir 3 (1987) 668.
- [41] G. Busca, J. Mol. Catal. 50 (1989) 241.
- [42] B. Eiteneer, C.-L. Yu, M. Goldenberg, M. Frenklach, J. Phys. Chem. A 102 (1998) 5196.
- [43] D.L. Baulch, C.J. Cobos, R.A. Cox, P. Frank, G. Hayman, Th. Just, J.A. Kerr, T. Murrells, M.J. Pilling, et al., J. Phys. Chem. Ref. Data 23 (6) (1994) 847.